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The single degree of freedom, or SDOF, system is a useful concept in structural

dynamics. It consists of a mass M connected to ground via a spring with stiffness K

and a damper with damping coefficient C. If the mass is given an initial

displacement (x) and then released, the displacement oscillates about zero and

gradually decreases with time.

         

The frequency of oscillation is

called the natural frequency and,

for low levels of damping, is given by
fn

1

2π

K

M
=

The period of oscillation is T
1

fn

=

The rate of decay of the response is governed  by damping. For structural

applications this is expressed as a 'damping ratio' or as a 'logarithmic decrement'.

 Damping Ratio

If the damping were to be gradually increased until the displacement dropped to

zero without any oscillation then the SDOF would be said to be 'critically damped'

with a damping coefficient of Ccrit (indicated by the blue curve in the graph below).

xp 

xp+1 
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Any further increase in the damping would give rise to a slower decay to zero

(the red curve in the graph). In practice, structural damping is only a fraction of

the critical value and the decay of vibration is more closely represented by the

green curve in the graph. The amount of damping can be defined in terms of a

critical damping ratio:

damping ratio ξ
C

Ccrit

=

The relationship between the damping ratio and the damping coefficient is 

C 2ξMω= 2ξ MK=

with the circular frequency ω given by ω 2π f=

 Logarithmic Decrement

An alternative way of describing the structural damping is to consider the height

of successive peaks in the vibration decay (denoted as xp and xp+1 in the graph on

the previous page). The natural logarithm of this ratio is the logarithmic

decrement δ (or 'log dec'): 

logarithmic decrement δ ln
xp

xp 1+









= i.e.
xp

xp 1+

e
δ

=

Or, if the decay over a number of cycles N is considered then

logarithmic decrement δ
1

N
ln

xp

xp N+









= i.e.
xp

xp N+

e
Nδ

=

The relationship between the 

logarithmic decrement and the damping ratio is...  δ 2πξ=

As a rough guide, a logarithmic decrement of 0.1 means that the peak amplitude

falls by approximately 10% in each successive cycle. 

Another way of visualizing the vibration decay associated with a particular

damping value is to consider the number of cycles required to cause the peak

amplitude to decay to a certain level. 

decay to 50% ... N50

ln
1

0.5









δ
=

ln 2( )

δ
=

ln 2( )

2πξ
=

decay to 5% ... N5

ln
1

0.05









δ
=

ln 20( )

2πξ
=

1

2ξ
=

π

δ
= (approx)

(these relationships are shown in the graph overleaf)
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 Dynamic Magnification Factor

If a sinusoidal load is applied to the SDOF the response eventually reaches a

'steady-state' condition. The graph below shows the response of a SDOF with 5%

damping ratio when the sinusoidal load is applied at three different frequencies

(but with the same load amplitude).

The peak value of the steady-state deflection, as a proportion of the static

deflection, is called the 'Dynamic Magnification Factor', given by:

DMF
1

1
f

fn









2

−









2

2ξ
f

fn









2

+

=
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 DMF versus frequency ratio for different levels of damping

DMF

Note that, for high levels of damping,

the maximum response (resonance)

occurs when the forcing frequency is

slightly lower than the natural

frequency. For low damping levels,

when the forcing frequency increases

above the natural frequency the

response decreases back down to the

static value when f 2 fn=

frequency ratio f/fn
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Frequency

D
M
F

The maximum DMF occurs when the forcing frequency is

fmax fn 1 2ξ
2

−=

The value of the maximum DMF is 

DMFmax
1

2ξ
=

π

δ
=

From this it follows that the displacement at resonance is 

xres
1

2ξ

F

K
=

π

δ

F

K
=

and the acceleration at resonance is 

ares
1

2ξ

F

M
=

π

δ

F

M
=

The DMF curve also supplies a means for determining the damping ratio:

where >f is the width of the DMF curve at 
1

2

times the resonant amplitude at frequency fmax.

ξ
∆∆∆∆f

2fmax

=

This is referred to as the half-power bandwidth method for determining the

damping, and is shown graphically in the figure below.

DMFmax
ξ

∆∆∆∆f

2fmax

=

>f DMFmax

2

fmax 
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 Build-up of Resonant Response

The response after a number of cycles, N, as a proportion of the final resonant

response is given by:

x

xres
1 e

2− πξN
−( )=

This expression is illustrated in the figure below for a number of different damping

ratios.
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Number of cycles to achieve resonance, N 

An approximate relationship for the number of cycles required to reach the

maximum resonant response (strictly speaking, 96% of it) is:

Npeak
1

2ξ
=

π

δ
=

The figure shows that roughly the same number of cycles again are required for

the response to build up from 96% to 100% of the maximum resonant response. 
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 Formulas for natural frequency 

Undamped natural frequency of

system with stiffness K and mass M fn
1

2π

K

M
=

Damped natural frequency fd fn 1 ξ
2

−=

(This shows that the damped natural frequency of a structure with 5%

damping will only be 0.1% lower than the undamped natural frequency. This

means that, for typical engineering structures, it can be assumed that fd = fn).

Natural frequency of a SDOF system in

terms of the self-weight deflection >

caused by 1g (Blevins (1979)).

fn
1

2π

g

∆
=

i.e. fn
15.76

∆
= (with > in mm) 

Modified version of the equation above.

Approximate value for the natural frequency of

a structure with distributed mass and stiffness

(Steel Designer's manual (2003)).

fn
18

∆
= (with > in mm) 

String/cable of length L with tension

T and mass per unit length m.
fn

1

2L

T

m
=

Pendulum of length L. fn
1

2π

g

L
=

Undamped natural frequency of system with

torsional stiffness K (moment/rotation) and

mass moment of inertia J.
fn

1

2 π

K

J
=

Approximate formula for road

bridge of length L metres

(Bachmann & Ammann (1995)).

fn
100

L
=

Approximate formula for

building of height H metres

(Ellis (1980)). 

fn
46

H
=
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Natural frequency

of mode i fi

λi
2

2πL
2

EI

m
=

Generalized mass

(fraction of total mass)

Participation

factorMode λ 
Fixed - Free beam

i = 1

i = 2

i = 3

1.875

4.694

7.855

0.250

0.250

0.250

1.566

0.867

0.509

Fixed - Fixed beam

i = 1

i = 2

i = 3

4.730

7.853

10.996

0.396

0.439

0.437

1.320

0.000

0.550

Fixed - Pinned beam

 Modal properties of uniform beams with various support conditions  (Blevins (1979))

i = 1

i = 2

i = 3

3.927

7.069

10.210

0.439

0.437

0.437

1.298

0.125

0.506>

Pinned - Pinned beam

E=Young's modulus, L=length,

I=area moment of inertia,

m=mass per unit length.

(see below for values of λ) 

i = 1

i = 2

i = 3

π

2π

3π

0.500

0.500

0.500

1.273

0.000

0.424> >

Free - Free beam

i = 1

i = 2

i = 3

4.730

7.853

10.996

0.250

0.250

0.250

0.000

0.000

0.000
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 Fundamental frequencies of plates with various support conditions

(Bachmann & Ammann (1995))

E=Young's modulus, t=thickness,

ρ=density, a=length, b=width,

µ=a/b, ν=Poisson's ratio

(see below for values of λ) 

Natural

frequency 
f

λ

a
2

Et
2

12 ρ 1 ν
2

−( )
=

λ 1.57 1 μ
2

+( )= λ 1.57 1 2.5 μ
2

+ 5.14 μ
4

+( )=

λ 1.57 5.14 2.92 μ
2

+ 2.44 μ
4

+( )= λ 1.57 1 2.33 μ
2

+ 2.44 μ
4

+( )=

λ 1.57 2.44 2.72 μ
2

+ 2.44 μ
4

+( )= λ 1.57 5.14 3.13 μ
2

+ 5.14 μ
4

+( )=

λ 3.25= λ 6.53=
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In the derivation of these charts no damping has been included because it has no
significant effect. The maximum DLF usually corresponds to the first peak of
response, and the amount of damping normally encountered in structures is not
sufficient to significantly decrease this value.
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ξa(%)

 Tuned Mass Dampers

The TMD design chart below gives the

 additional overall damping ratio (ξa)

provided by a TMD with active mass Md

when attached to a structure with modal

mass Ms and inherent damping ξs. The chart

is based on a TMD with ξd = 15% and a

structure with ξs in the range 0.5% - 2.5%.

It also assumes that the TMD is located at

the position of maximum response of the

mode being damped.

The overall damping becomes ξs + ξa.

Tuned

Mass

Damper

Structure

modal

mass

ratio 

Md/Ms

(%)

frequency ratio fd/fs (%)
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me
0

L

xm x( ) ϕ x( )
2⌠


⌡

d

0

L

xϕ x( )
2⌠


⌡

d

=

 Tuned Mass Dampers

If the TMD can be tuned then the TMD chart

shows that the additional damping is roughly

ξa

Md

Ms

=

Maximum deflection of

TMD relative to structure
xreld

1

2ξd

=
π

δd

=

Optimum TMD frequency

(Mead (1998))

fd

fs

1 μ+
= with μ

Md

Ms

=

Optimum TMD damping ratio

(Bachmann & Ammann (1987))

ξd
3 μ

8 1 μ+( )
3

=

 Wind-induced vortex shedding

fn=natural frequency,

D=across-wind dimension,

St=Strouhal number.

Critical wind speed for vortex

shedding (Blevins 2001)
vcrit

fn D

St
=

For a circular cylinder St is approximately 0.2 and therefore vcrit 5 fn D=

The susceptibility of vortex-induced vibrations depends on the structural damping

and the ratio of the structural mass to the fluid mass. This is expressed by the

Scruton number (Sc), also known as the 'mass-damping parameter' (Scruton 1981).

(equivalent mass 

per unit length)Sc
2 me δs

ρair D
2

= with 

 Wind-induced galloping  den Hartog (1956)

dCy/dα is the rate of change 

of the lateral force coefficient

with angle of attack

Critical wind speed

for galloping
vcrit

2 Sc fn D

dCy

dα

=

A section 

 is susceptible 

to galloping if 

dCy

dα
0> note that

dCy

dα

dCL

dα
CD+









−=

with CL=lift coefficient, CD=drag coefficient 
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Relationship between SDOF response and structural response  for each mode.  

 Single Degree of Freedom response spectrum

Sa acceleration (g) Sa ξ = 2%

ξ = 7%

Sa 

SDOF acceleration

ZPA 

fn 

base acceleration

Approximate relationship Sa
ZPA

2ξ
= ZPA

π

δ
=

 Structure with distributed mass and stiffness

Generalized mass

(modal mass)

MG
0

L

xϕ x( )
2
ml x( )

⌠

⌡

d=

i

Participation 

factor (see page 8

for typical values)

Γ
0

L

xϕ x( ) ml x( )
⌠

⌡

d

0

L

xϕ x( )
2
ml x( )

⌠

⌡

d

=
natural

frequency fn

L 
mode shape

ϕϕϕϕ(x) Maximum

acceleration

at point i

ai Γ ϕ xi( ) Sa=

mass per

unit length

ml(x)

Effective mass ME
0

L

xϕ x( ) ml x( )
⌠

⌡

d








2

0

L

xϕ x( )
2
ml x( )

⌠

⌡

d

=

Base shear force SFbase ME Sa= Γ
2
MG Sa=

The maximum response from each of the modes can be combined using the 'Square

Root Sum of Squares' or 'Complete Quadratic Combination' method (see next page).

f (Hz)
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ρi j, 

8 ξi ξj ξi
fi

fj
ξj+









fi

fj









1.5

1
fi

fj









2

−







2

4 ξi ξj
fi

fj
1

fi

fj









2

+







+ 4 ξi( )
2

ξj( )
2

+ 
fi

fj









2

+

=

This section compares two standard techniques for combining the response from

different modes, namely the SRSS (Square Root Sum of Squares) and CQC (Complete

Quadratic Combination) methods. As the name suggests, the SRSS method calculates

the combined response by performing an SRSS on the modal contributions. For the

CQC method the modal responses, a, are combined by making use of modal

cross-correlation coefficients (Wilson, Kiureghian & Bayo): 

a_SRSS

i

ai( )
2

∑= a_CQC

i j

ai ρi j, aj( )∑∑=

where i, j represent the modes and

where f=frequency and ξ=damping ratio. The difference between the two methods

is illustrated with some examples based on 4 modes, each with a=1: 

f

3

5

7

9















Hz= ξ

2

2

2

2















%= ρ

1

0.01

0

0

0.01

1

0.01

0

0

0.01

1

0.02

0

0

0.02

1















= Well-spaced modes

a_SRSS 2=

a_CQC 2.03=

Two of the modes 

now closely spacedf

3

5

5.01

9















Hz= ξ

2

2

2

2















%= ρ

1

0.01

0.01

0

0.01

1

1

0

0.01

1

1

0

0

0

0

1















=

a_SRSS 2=

a_CQC 2.46=

Well-spaced modes

with increased ξ
f

3

5

7

9















Hz= ξ

10

10

10

10















%= ρ

1

0.13

0.05

0.03

0.13

1

0.26

0.1

0.05

0.26

1

0.38

0.03

0.1

0.38

1















=
a_SRSS 2=

a_CQC 2.42=

 Combination of Modal Responses

Two close modes

f
5

5.01








Hz= ξ

2

2








%= ρ

1

1

1

1









= a_SRSS 1.414=

a_CQC 2=
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 Tripartite Graph Paper
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 Terminology 

δ logarithmic decrement

Hf frequency interval

ξ damping ratio

ω circular frequency (2πf)

ν Poisson's ratio

Γ participation factor

ϕϕϕϕ mode shape

µ aspect ratio, mass ratio

ρ density

H self-weight deflection

a acceleration, amplitude

C damping coefficient

Ccrit critical damping coefficient

CD drag coefficient

CL lift coefficient

Cy lateral force coefficient

CQC complete quadratic combination

D across-wind dimension

DMF dynamic magnification factor

E Young's modulus

f frequency

fd damped natural frequency

fi natural frequency of mode i 

fn undamped natural frequency

g acceleration due to gravity

h plate thickness

H height

J mass moment of inertia

K stiffness

L length

ml mass per unit length 

M mass

ME effective mass

MG generalized mass

N number of cycles

SDOF single degree of freedom

Sc Scruton number

St Strouhal number

SRSS square root sum of squares

t time, thickness

T period, tension

x displacement

ZPA zero period acceleration
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Acceleration at resonance 5  Natural frequency from deflection 7 

Beam frequency 8  Number of cycles to resonance 6 

Beam generalized mass 8  Participation factor 13 

Beam participation factor 8  Pendulum natural frequency 7 

Bridge frequency 7  Period 1 

Building frequency 7  Rectangular plate natural frequency 9 

Build-up of resonant response 6  References 16 

Cable natural frequency 7  Resonance 4 

Circular frequency 2  Response after a number of cycles 6 

Circular plate natural frequency 9  Response of SDOF to various loads 10 

Complete quadratic combination 14  Scruton number 12 

Critical damping ratio 2  Seismic base shear 13 

Critical wind speed 12  Seismic response spectrum 13 

Damped natural frequency 7  Single degree of freedom (SDOF) 1 

Damping coefficient 1,2  Spectral acceleration 13 

Damping ratio 1,2  Square plate natural frequency 9 

Displacement at resonance 5  Square root sum of squares 14 

Dynamic load factor (DLF) 10  String natural frequency 7 

Dynamic magnification factor (DMF) 3-5  Strouhal number 12 

DMF – frequency at maximum value 5  TMD design chart 11 

DMF – maximum value 5  TMD optimum damping ratio 12 

Effective mass 13  TMD optimum frequency 12 

Galloping 12  TMD relative displacement 12 

Generalized mass 13  Torsional frequency 7 

Half-power bandwidth 5  Tripartite graph paper 15 

Logarithmic decrement 1,2  Tuned mass damper (TMD) 11,12 

Mass-damping parameter 12  Vibration decay 2,3 

Modal mass 13  Vortex shedding 12 
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